
ABSTRACT: Strategies for health monitoring of bridges with new sensors or new signal features are emerging in recent years to 

overcome the limitations of traditional vibration-based approaches. This paper presents a monitoring system of a road bridge that 

combines four signal features from different sensor types in order to obtain a holistic picture of the structural condition. These 

four features are the bearing displacement under temperature load, the natural frequencies and the ratios of integrals (R-signature) 

and extreme values (M-signature) of strain and displacement signals during the crossing of vehicles. A derivation of the promising 

R-signature based on influence lines is presented. An anomaly detection approach with an autoencoder is used to identify changes 

in the patterns of the extracted features that can indicate structural damage as well as faults in the sensing system. The approach 

is demonstrated with real-world data where an erroneous signal calibration is detected. Signals under structural damage are 

simulated with a detailed finite element model. It is shown that the anomaly detection procedure can clearly identify the damaged 

state in the simulated data.  
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1 INTRODUCTION 

A key objective for Structural Health Monitoring (SHM) of 

bridges is the detection of damage at the earliest possible stage. 

Extensive research exists on the field of vibration-based 

methods. These methods commonly use accelerometers to 

monitor the modal characteristics of a structure, i.e. natural 

frequencies, mode shapes and modal damping. Essential 

challenges remain in the field: (i) SHM methods are difficult to 

validate under real-world conditions [1]. Experiments with 

artificially induced damage to bridges in operation are 

practically impossible. Only few studies have investigated the 

effects of artificial damage on bridges with no traffic at the end 

of their service life, e.g. [2]. Therefore, the effectiveness of 

damage detection methods is commonly evaluated with 

simulations or laboratory tests. The complexity of real-world 

actions on bridges are difficult to account for with these 

approaches. (ii) Natural frequencies show only small changes 

as a result to structural damage but (iii) vary due to 

environmental influences, predominantly temperature [3]. The 

temperature-dependent stiffness of the asphalt pavement is 

identified as a main influencing factor [2]. The variations due 

to external influences can exceed the magnitude of changes 

caused by structural damage and therefore prevent damage 

detection. 

The dependencies of the vibration response of a structure to 

external influences can be accounted for by numerical models 

from the field of Machine Learning (ML). These models are 

based on the data features only, i.e. no physical assumption 

about the structure is made. Hereby, feature is the common 

term for inputs into a ML-model. Compared to physical 

models, e.g. Finite Element (FE) models, non-physical models 

tend to be more flexible and commonly less computationally 

demanding. However, non-physical models can mainly be used 

to detect the presence of damage. Localisation and assessment 

of damage requires physical information.  

ML-approaches for SHM can roughly be divided into 

regression models and reconstruction models. Regression 

models relate an input, e.g. temperature, to an output, e.g. a 

natural frequency. Depending on the relationship, linear models 

can be used [4] or non-linear models such as the Gauss-

Process-Regression (GPR) are required [5]. Other approaches 

apply the regression to the intermediate steps of a modal 

analysis procedure such as Auto Regressive (AR) models [6].  

Reconstruction models replicate the input features 

considering the substantial patterns of the data. Such models 

are at the core of many unsupervised anomaly detection 

procedures, e.g. for bank fraud detection or for medical 

diagnosis (see [7] for a review). The Principal Component 

Analysis (PCA) is a linear reconstruction approach. 

Applications to vibration-based bridge monitoring can be found 

already in 2005 [8]. The adaption to non-linear dependencies 

can be achieved by piecewise PCA [9] or Kernel-PCA [10]. 

Autoencoders can be understood as a generalization of the PCA 

based on neural networks. Early applications to SHM can be 

found in [11]. More recent publications apply the concept 

directly to acceleration time-series data, e.g. [12]. 

Approaches with sensors other than accelerometers and 

different signal features are pursuit to address the limited 

sensitivity of modal characteristics to structural damage. The 

use of inclinometers shows promising results [13] as well as the 

application of (fibre-optical) strain gauges [14]. The features 

for strain gauges signals in the later publication include extreme 

values and integrals during the crossing of vehicles on road 

bridges. 

An anomaly detection scheme for SHM with an autoencoder 

is presented here (Section 2.1). The presented approach 

combines four different features from accelerometers, strain 
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gauges and displacement transducers that are extracted from 

signals of a road bridge (Section 3). In doing so, a broad picture 

of the structural condition of the bridge is obtained. A 

theoretical derivation of a strain gauge signal feature, the R-

Signature, is given in Section 2.2. The application to real-world 

data shows that the used autoencoder architecture is suitable to 

reconstruct the data (Section 4) and to detect faults of the 

sensing system. To validate that the model can detect structural 

damage, signals of the bridge in a damaged state are artificially 

generated with detailed FE-simulations (Section 5 and 6). 

2 THEORECTICAL BACKROUND 

 Anomaly Detection with Autoencoders 

Anomaly detection (e.g. [7]) provides a conceptual 

framework that can be adapted to bridge SHM. Incoming data 

is either labelled as normal, which refers to an intact condition, 

or anomalous, which indicates the possibility of structural 

damage or a fault in the monitoring system. The label depends 

on the reconstruction error of an underlying ML-model. The 

reconstruction error 𝜀(𝑥) is calculated as the deviation of new 

data 𝑥 compared to the predictions 𝑥∗ of the model. A vector 

norm such as the Euclidean distance in Eq. 1 can be used as 

reconstruction error. 

𝜀(𝑥) = ‖𝑥 − 𝑥∗‖2 (1) 

The ML-model is fitted to the data from the structure in an 

undamaged condition during a training period. During 

application, the condition of the structure is assessed by the 

reconstruction error. If the bridge undergoes damage, the 

patterns of the sensor data will change and the model 

predictions will consequently deviate from the measurements, 

resulting in a high reconstruction error. The data will be 

labelled as anomalous. Thereafter, the structure as well as the 

monitoring system must be assessed by experienced engineers 

to determine the source of the anomaly. Based on this 

assessment, further steps are initiated.  

 
(a)  (b) 

Figure 1. (a) Autoencoder (b) Perceptron. 

An autoencoder is a type of neural network that can be used 

for anomaly detection. The basic architecture of an autoencoder 

consists of two parts (Figure 1a): an encoder 𝑓𝑒(𝑥), which 

transforms the input data 𝑥 to a lower dimensional 

representation 𝜉∗, and a decoder 𝑓𝑑(𝜉∗), which subsequently 

obtains a reconstruction 𝑥∗ of the input data . By forcing the 

data through a lower dimensional bottleneck, also called code 

or latent representation, the underlying data structure is 

captured. A reconstruction approach is different from explicit 

regression methods for SHM where an input 𝜉, such as the 

temperature, is directly mapped to an output 𝑥, e.g. natural 

frequencies, by a model 𝑓(𝜉). Autoencoders provide the 

advantage that physical relationships that are unknown or 

difficult to measure are implicitly considered through the learnt 

correlation structure of the data. 

Autoencoders can be built with different types of neural 

networks. Here, the simplest form, a feed forward Multi-Layer 

Perceptron (MLP) network is used. An MLP consist of several 

layers of stacked perceptrons. Each perceptron calculates the 

weighted sum ∑𝑤𝑗𝑥𝑗 = 𝑊𝑇𝑥 of its inputs 𝑥𝑇 = [𝑥1, 𝑥2, … , 𝑥𝑘] 

(Figure 1b) which are the outputs of the previous layer. Hereby, 

𝑊𝑇 = [𝑤1, 𝑤2, … , 𝑤𝑘] are the weights. An offset or bias 𝑏 is 

additionally added to the weighted sum. The possibility to 

represent non-linear relationships is achieved through a non-

linear activation function 𝑔(𝑧 = 𝑊𝑇𝑥 + 𝑏). The rectified 

linear function (ReLU) will be used here and is defined as 

𝑔(𝑧) = max{0, 𝑧}. The benefit of neural networks with non-

linear activation functions and at least one hidden layer is that 

they can approximate almost any function. This is a loose 

formulation of what is known as the universal approximation 

theorem (details are discussed e.g. in [16]). A hidden layer is 

one that is not exposed to the input or the output of the neural 

network. 

All autoencoder models in this paper use an architecture with 

the following five layers: input layer, hidden encoder layer, 

bottleneck, hidden decoder layer, output layer. The output layer 

uses a linear activation function. The weights 𝑤 of the neural 

network are obtained through optimization with the objective 

to minimize the mean squared error between input 𝑥 and output 

𝑥∗ =  (𝑓𝑑 ∘ 𝑓𝑒) (𝑥) (Eq. 2).  

min 
𝑤

1

𝑛
 ∑‖𝑥𝑖 − (𝑓𝑑 ∘ 𝑓𝑒)𝑤  (𝑥𝑖)‖

2

2
𝑛

𝑖=1

 (2) 

The optimization is conducted with a training data set 

consisting of 𝑛 data points. Additionally, 20% of the training 

data is used for validation. This ensures that the learnt 

relationship is generally valid and does not hold for the training 

data only. The Adam-Algorithm (see [16]) is used for 

minimizing Eq. 2. The data is fed through the network several 

times during training. Each cycle is called an epoch.  

 R-Signature 

Depending on the architecture, an autoencoder can be used 

with different types of data, including high dimensional data 

like images or time series. The presented approach combines 

four different features that are extracted from the measurement 

signals (Section 3.2). The approach is non-sequential, i.e. the 

temporal order of the data is not considered in the model. One 

of the considered features, the R-signature, showed to be 

significantly more sensitive to structural damage than natural 

frequencies in the first investigation of the authors [15]. The 

feature is based on influence lines. A brief derivation shall be 

given in the following.  

The concept of influence lines can be applied to sensors, such 

that the influence line 𝜂𝑘(𝑥) describes the amplitude measured 

by sensor 𝑘 as a reaction to a unit load at position 𝑥 on a beam 

bridge (Figure 2). The signal measured during the crossing of a 

vehicle at sensor 𝑘 shall be defined as 𝑠𝑘(𝑡). Assuming 

constant vehicle velocity 𝑣, the signal can be considered in the 

space domain as 𝑠𝑘(𝑥) = 𝑠(𝑡 ⋅ 𝑣). If the static structural 

response is linear, 𝑠𝑘(𝑥) can be calculated according to Eq. 3 

as the superposition of the reactions to 𝑁 axle loads 𝑃𝑖 , where 
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𝑥 describes the position of the first axle and 𝑎𝑖 is the distance 

of axle 𝑖 to the first axle. These considerations hold for all 

sensors that measure displacement related properties, e.g. strain 

gauges, displacement transducers or inclinometers. 

𝑠𝑘(𝑥) =  ∑ 𝑃𝑖  ⋅ 𝜂𝑘(𝑥 − 𝑎𝑖)

𝑁

𝑖=1

 (3) 

 

Figure 2. Schematic illustration of the crossing of a vehicle on 

a single span beam bridge 

It can be shown that the integral 𝐼𝑘 over 𝑠𝑘(𝑥) is proportional 

to the gross vehicle weight (Eq. 4). For this purpose, the 

integration limits are chosen to be 𝑥 = 0 and 𝑥 = 𝐿𝐵 + 𝐿𝑉, 

where 𝐿𝐵 is the length of the bridge and 𝐿𝑉 = 𝑎𝑁 is the length 

of the vehicle. The integral can be expressed as the sum of the 

integrals over the signal contributions of every axle 𝑖. The 

influence line 𝜂(𝑥) only has values ≠ 0 in the interval [0, 𝐿𝐵]. 

Therefore, ∫ 𝜂𝑘(𝑥 − 𝑎𝑖)𝑑𝑥
𝐿𝐵+𝐿𝑉

0
 simplifies to ∫ 𝜂𝑘(𝑥)𝑑𝑥

𝐿𝐵

0
. As 

a result, 𝐼𝑘 is reduced to the product between the gross vehicle 

weight ∑𝑃𝑖  and the integral over the influence line of the 

considered sensor. 

𝐼𝑘 = ∫ 𝑠𝑘(𝑥)𝑑𝑥
𝐿𝐵+𝐿𝑉

0

 

= ∫ ∑ 𝑃𝑖

𝑁

𝑖=1

𝐿𝐵+𝐿𝑉

0

⋅ 𝜂𝑘(𝑥 − 𝑎𝑖)𝑑𝑥 

= ∑ (𝑃𝑖 ∫ 𝜂𝑘(𝑥 − 𝑎𝑖)𝑑𝑥
𝐿𝐵+𝐿𝑉

0

)

𝑁

𝑖=1

 

= ∑ 𝑃𝑖

𝑁

𝑖=1

⋅ ∫ 𝜂𝑘(𝑥)𝑑𝑥
𝐿𝐵

0

 

(4) 

The relationship from Eq. 4 can be used for bridge weight in 

motion systems. Here, it will be used to create a feature that is 

independent of vehicle weight and axle distances. The feature 

considers the ratio of the integrals 𝐼𝑗 and 𝐼𝑘 over the signals 

from the sensors 𝑗 and 𝑘 (Eq. 5). It shall be referred to as 

R-value. It can be seen from Eq. 5 that the vehicle weight 

cancels out. Because 𝑠𝑗(𝑥) and 𝑠𝑘(𝑥) undergo the same 

transformation to the space domain, the ratio can also be 

calculated in the time domain. For this case, the upper 

integration limit is the duration 𝑇 of the vehicle crossing. 

Within classical beam theory the R-value is constant.  

It applies that 𝑅(𝑠𝑗 , 𝑠𝑘) = 𝑅(𝑠𝑘, 𝑠𝑗)
−1

. Therefore, there are 

𝑛(𝑛 − 1)/2  distinct R-values. The vector of all R-values shall 

be referred to as R-signature. Like a vibration mode shape, the 

R-signature provides information about the stiffness 

distribution over the structure. Severe structural damage 

changes the stiffness distribution and leads e.g. to an increase 

in the amplitudes of some sensor signals while the signals from 

sensors which are further away from the damage location 

remain relatively unaffected. This results in a deviation of the 

R-signature which can be used to identify the presence of the 

damage. It shall be noted that there are cases possible where the 

influence lines of several sensors change in a similar fashion 

due to damage. However, it is assumed that the risk of an 

undetectable severe damage case is relatively low with multiple 

spatially distributed sensors in longitudinal and transversal 

direction. The R-signature can be used as a feature for damage 

detection with physical (e.g. FE-Update) as well as non-

physical models (e.g. ML). 

𝑅(𝑠𝑗 , 𝑠𝑘) =
𝐼𝑗

𝐼𝑘

=
∑ 𝑃𝑖

𝑁
𝑖=1 ⋅ ∫ 𝜂𝑗(𝑥)𝑑𝑥

𝐿𝐵

0

∑ 𝑃𝑖
𝑁
𝑖=1 ⋅ ∫ 𝜂𝑘(𝑥)𝑑𝑥

𝐿𝐵

0

 

=
∫ 𝜂𝑗(𝑥)𝑑𝑥

𝐿𝐵

0

∫ 𝜂𝑘(𝑥)𝑑𝑥
𝐿𝐵

0

 

=
∫ 𝑠𝑗(𝑡)𝑑𝑡

𝑇

0

∫ 𝑠𝑘(𝑡)𝑑𝑡
𝑇

0

= 𝑐𝑜𝑛𝑠𝑡. 

(5) 

Following limitations apply to the use of the R-signature: (i) 

Only the quasi-static response is considered. Hence, if the 

sensor signals contain significant amplitudes from dynamic 

structural response, the calculation of the R-signature can be 

flawed. (ii) In order to calculate the R-Signature, the crossings 

of single vehicles need to be isolated in the measurement data. 

This might not be feasible for large bridges. 

The concept of the R-signature is derived from one 

dimensional beam theory. However, the position of a vehicle in 

transversal direction on a lane varies on a real bridge. The 

influence of the transversal vehicle position on the R-signature 

is investigated in [15] using the same bridge as here as an 

example. Simulations show that the influence of transversal 

vehicle position on the R-values is approximately linear within 

a lane. Therefore, an anomaly detection procedure with the 

linear PCA is applied. The procedure is validated for damage 

detection with the simulated data. It is shown that the PCA-

procedure can also be applied to real-world data with a limited 

selection of strain gauges. However, when also considering the 

signals from displacement transducers at the roller bearing for 

the R-values, the dependencies become non-linear due to 

effects such as temperature and friction. The PCA is 

insufficient to account for these effects. To address these 

shortcomings, the presented approach with an autoencoder is 

applied. 

3 EXAMPLE BRIDGE 

 Sensor Layout 

The anomaly detection approach shall be demonstrated on a 

hollow section girder steel road bridge. The single span bridge 

(L = 47 m) from 1971 is horizontally curved (R = 525 m) and 

oblique-angled (Figure 3). A heavily frequented federal road 

runs over the bridge on separate superstructures for each 

direction. Due to corrosion damage, traffic is limited to one 

lane per direction.  
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(a) (b) 
Figure 3. Relevant strain gauges, displacement transducers and temperature sensors on the example bridge:  

(a) cross section (b) plan view. 

A sensor system consisting of accelerometers, displacement 

transducers, strain gauges and temperature sensors is used to 

continuously monitor the structural health of the bridge. Only 

the data of one of the superstructures is discussed in the 

following. The displacement of the roller bearings is measured 

with one displacement transducer for each bearing (a-d, b-d, 

Figure 3). Two accelerometers are placed at mid-span to obtain 

the vibration characteristics of the bridge. Four strain gauges 

are placed at mid-span on the webs close to the bottom chord 

of the respective main girders.  

Due to the oblique-angled layout, the strain gauges at girder 

a (a01, a02) and b (b01, b02) do not lie between the same cross 

members. The open traffic lane is above main girder MG-b. 

Additional strain gauges for a bridge weigh-in-motion system 

are located on the ribs of the bridge deck and the cross 

members. However, these sensors will not be considered for 

health monitoring.  

The temperature of the bridge, as well as the outside 

temperature, is measured with a total of 10 temperature sensors. 

The evaluation showed that the temperature below the bridge 

deck 𝑇𝐷 and at the bottom chord of the main girder 𝑇𝐵 have the 

largest influence. Temperature sensors are sampled with 1 Hz 

and all other sensors with 50 Hz. 

The signals of the strain gauges and the displacement 

transducer can be partitioned according to the primary load 

acting on the bridge during the considered time instance. For 

smaller road bridges the main loads are traffic and temperature. 

Effects due to wind load are mostly insignificant. The signals 

could further be divided into dynamic and quasi-static 

components according to their frequency content. Here, 

components with frequencies close to or above the first natural 

frequency of the system can be defined as dynamic. 

Components with frequencies below the first natural frequency 

can be described as quasi-static. Additionally, the signals can 

contain errors such as electrical noise, hum or sensor drifts.  

 Feature Extraction 

In a pre-processing step, a segmentation according to the 

primary load (traffic or temperature) on the bridge is 

performed. A further decomposition through frequency filters 

showed no clear benefit. Features are subsequently calculated 

separately for segments 𝑥𝑉 during which vehicles cross the 

bridge and segments 𝑥𝑇 that contain mainly effects due to 

temperature load. Time windows for 𝑥𝑉 are zeroed according 

to the preceding values of 𝑥𝑇. The following features are 

extracted: 

R-signature: The numerical integral 𝐼 over 𝑥𝑉 is calculated 

for the strain gauges (a01, a02, b01, b02) and the two 

displacements transducers at the roller bearings (a-d, b-d) for 

each vehicle crossing (Figure 4). All combinations of R-values 

are then calculated with Eq. 5, resulting in a 15-dimensional 

feature vector. 

M-signature: Additionally to the numerical integral, the 

extreme value 𝐸 of 𝑥𝑉 is also calculated for every vehicle 

crossing (Figure 4). Similar to the R-values, the ratios between 

different sensors are obtained according to Eq. 6. Although a 

theoretical relationship has not yet been derived, it can be 

observed (Section 4) that the values show correlations which 

can be useful in detecting anomalies. The M-values are 

calculated for the same sensors as the R-values, which leads to 

another 15-dimensional feature vector. 

𝑀(𝑠𝑗 , 𝑠𝑘) =
𝐸𝑗

𝐸𝑘

=
max{|𝑠𝑗(𝑡)|}

max{|𝑠𝑘(𝑡)|}
 (6) 

 
Figure 4. Illustration of the feature extraction 

Temperature-dependent Displacement: The 15-min 

average of the signal part 𝑥𝑇 is obtained for the displacement 

transducers (a-d, b-d) as another feature. This feature is useful 

to monitor the temperature-dependent displacement of the 

roller bearings. 

Natural Frequencies: The Frequency Domain 

Decomposition (FDD) is used to calculate natural frequencies 

and mode shapes from 15-min time windows of the 

accelerometer signals. The first two natural frequencies with an 

average of 𝑓1̅  = 2.19 𝐻𝑧 and 𝑓2̅ = 3.37 𝐻𝑧 can be identified 

reliably and are therefore considered as features. It has been 

investigated if more variance of the natural frequencies can be 

explained by using only the free decay response after the 

crossing of vehicles for modal analysis. However, no clear 

dependency of the natural frequencies and factors, such as the 
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maximum strain or acceleration amplitude, could be 

determined. Because the number of vehicle crossings with an 

undisturbed free decay response is limited, modal analysis is 

carried out without distinguishing between the signal parts 𝑥𝑉 

or 𝑥𝑇. 

Lastly, the temperatures at the deck (𝑇𝐷) and the bottom 

chord (𝑇𝐵) are also used for the autoencoder which leads to a 

total of 36 features for each isolated crossing of a vehicle. 

Features that are independent of vehicle crossings are taken 

from the respective 15-min time window in which the crossing 

falls. 

4 APPLICATION TO REAL-WORLD DATA 

The anomaly detection procedure is demonstrated with real-

world data between July 2019 and May 2020. The data until 

March 2020 is used for the training of the autoencoder of which 

80% is used for the actual learning and 20% serves for 

validation. The application of the autoencoder is demonstrated 

with the data from March and April 2020. On the 9th of April, 

a restart of the monitoring system led to an erroneous 

calibration of the signals from the displacement transducers. 

This error remains in the application data to show the ability of 

the presented approach to detect faults of the sensing system.  

Vehicles with a gross weight approximately between 16 t and 

60 t are used for anomaly detection. During weekdays an 

average of 125 vehicles fall into this category. On Saturdays 

the average is 25 vehicles and on Sundays it is only 10. The 

lower number on weekends leads to less reliable predictions. 

This issue is addressed by a variable error threshold in [15]. For 

simplicity, a constant threshold is used here.  

Figure 5 shows the pairwise dependencies of some of the 

features. The R- and M-values between the strain gauges show 

linear dependencies between each other. No clear dependency 

between the R-/M-values and temperature is visible. R-values 

that consider the bearing displacements (e.g. b-d) show a non-

linear relationship with other R-values as well as with 

temperature or the natural frequencies. The temperature-

dependent bearing displacement has a clear linear correlation 

with 𝑇𝐷. The natural frequencies show non-linear behaviour 

with respect to temperature and thus with respect to the bearing 

displacements as well. An increase of frequency, i.e. a 

stiffening of the structure, is visible for high as well as for low 

temperatures.  

It is known from other publications (e.g. [2]) that the asphalt 

layer has a contribution to the stiffness of a bridge and that the 

asphalt stiffness changes in a non-linear fashion with respect to 

temperature. However, it becomes clear from Figure 5 that 

temperature is not the only source for non-linearity for the 

features R(b-d, b01) and 𝑓2 as large proportions of the variance 

remains unexplained. It is assumed that the friction in the roller 

bearings are another significant source for non-linear 

behaviour. The specific relationships have not yet been 

clarified.  

 

Figure 5. Correlation structure of selected features of the real-world data. Lower triangular matrix: scatter plot, diagonal: density 

distribution, upper triangular matrix: Pearson’s correlation coefficient 
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The application of the autoencoder provides the benefit that 

dependencies from influences that are unclear or not 

measurable can be implicitly captured. In the comparison of 

several configurations, an autoencoder with a hidden layer size 

of 60 neurons and a bottleneck layer size of 18 neurons showed 

the best result. A lower size of the bottleneck layer does not 

result in a consistent reconstruction error over the training 

period. Increasing the size of the latent space can lead to the 

learning of an identity function and might therefore be useless 

for anomaly detection. A compression rate of 18/36 = 0.5 

appears to be a suitable compromise.  

The features are standardised to zero mean and unit variance 

before being fed to the model. The application data is also 

standardised by the mean and variance of the training data. The 

network is trained for 300 epochs. No significant model 

improvement can be noticed towards the end of the training. 

The training and test accuracy are approximately equal around 

0.97 where an accuracy of 1.0 indicates perfect reconstruction. 

Euclidean distance (Eq. 1) is used as the reconstruction error 

in standardised coordinates. In most cases, structural damage 

or faults of the sensing system would manifest themselves 

permanently. Based on this assumption, anomaly detection is 

conducted with the daily median of the reconstruction error. In 

doing so, the influence of anomalies of single crossings that 

arise, e.g. from errors in the pre-processing, are weakened. A 

log-normal distribution is fitted to the daily median and an error 

threshold is chosen as the 99th-percentile (Figure 6). The 

resulting threshold value is 0.082. Few anomalies can be seen 

during the training period in Figure 7a. Under the assumption 

that the structure is undamaged during this period these 

anomalies are false positive. It is interesting that the false 

positive anomalies arise on the coldest days of the measurement 

period (2019-11-30, 2020-01-02) with temperatures 

between -3 °C and -5 °C. This indicates that the autoencoder 

does not reflect the data sufficiently under these rare 

conditions. More training data under extreme temperatures 

would be needed to achieve a better model fit. 

The incoming data is clearly identified as anomalous after the 

9th of April, as the median of the reconstruction error increases 

to values above 0.7 (Figure 7b). If the reconstruction error 

exceeds the threshold permanently, a thorough investigation 

into the source of an anomaly is mandatory. This investigation 

can be challenging as it requires interdisciplinary knowledge in 

the areas of machine learning, electrical and structural 

engineering. In the presented case, the source of the anomaly 

could be identified as the erroneous offset in the signals of the 

displacement transducers. The detection of the signal offset 

demonstrates that the autoencoder is suitable to identify 

changes in the data structure due to faults in the sensing system 

and likely also due to structural damage. 

 
Figure 6. Reconstruction error of the real-world training data 

with a log-normal distribution  

5 SIMULATION 

Detailed FE-simulations are conducted to evaluate if the 

procedure is also able to detect structural damage. Sensor 

signals are simulated in a damage state of the bridge under 

realistic operational loads. The assumed damage condition is a 

severe fatigue crack in the main girder b. The crack lies at the 

location of a change in thickness of the bottom chord at around 

a third of the girder length (Figure 3). Four damaged scenarios 

S1 to S4 with increasing crack length are distinguished. The 

undamaged condition is referred to as S0. In scenario S1 the 

crack starts from the inner side of the girder with a length of 

20 cm (S2: 40 cm, S3: 80 cm). Scenario S4 assumes the brittle 

fracture of the entire bottom chord. Modelling of the crack is 

achieved by decoupling the edges of the shell elements in the 

FE-model. All FE-calculation are based on linear-elastic 

material behaviour. Therefore, non-linear effects such as local 

yielding in the crack area are not taken into account.  

The FE-model (Figure 8) is used to calculate grid points for 

interpolation surrogate models using cubic spline interpolation 

[17]. The simulations are subsequently conducted with the 

interpolation models. Different surrogate models are created 

for each damage scenario. The input data for the simulations is 

described in the following: 

 

 
(a) (b) 

Figure 7. Anomaly detection with real-world data: (a) training period (b) application period 
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Asphalt Stiffness: An asphalt layer on the bridge deck is 

included in the FE-model. A non-linear temperature-dependent 

stiffness is considered. The asphalt temperature is assumed to 

be equal to the temperature at sensor 𝑇𝐷. The temperature-

dependent asphalt stiffness is the only parameter used for the 

interpolation model for the natural frequencies. A grid of eight 

values between -20 °C and 50 °C is used. 

 

Figure 8. Detailed FE-model of the example bridge 

Temperature Load: The input data for the temperature load 

is directly adopted from the real measurement data. A constant 

temperature load is applied to all elements of the bridge deck 

according to the measurement values of sensor 𝑇𝐷. 

Analogously, a constant temperature is applied to the bottom 

chords according to sensor 𝑇𝐵. A linear vertical gradient is 

assumed in the webs. The response to temperature load is 

calculated for the strain gauges and displacement transducers. 

Eight grid points are used for the deck temperature 𝑇𝐷. 

Additionally, 12 grid points are considered for 𝑇𝐵 for every 𝑇𝐷 

to account for variations of the vertical temperature gradient. 

Traffic Load: The data for the axle loads and the vehicle 

geometry is taken from a weigh-in-motion station and was 

kindly provided by the German Federal Highway Research 

Institute (BASt). The velocity of the vehicles is assumed to be 

normally distributed with a mean value of 30 km/h and a 

standard deviation of 5 km/h. As is the case on the real bridge, 

traffic is only considered on lane 2. The position of the vehicles 

in transversal direction is assumed to be normally distributed 

with a standard deviation 𝜎 of 17 cm. The expected value 

corresponds to the centre of the lane. The range of values is 

approximately ±3𝜎 = 0.5 m. The crossing of a vehicle is 

simulated for every 30 minutes resulting in 48 crossings per 

day. Only vehicles above a gross vehicle weight of 7.5 t are 

considered. Daily and weekly variations of traffic 

characteristics are taken into account in the simulation, i.e. the 

data is divided in 3-hour windows and between weekdays, 

Saturdays and Sundays. For example, a vehicle sample for 

Sunday at 04:30 is drawn from data from Sundays between 

03:00 and 06:00.  

The static structural response to the crossing of a vehicle is 

calculated by independently obtaining the response for each 

axle and subsequently superimposing the results. This approach 

corresponds to Eq. 3, however, the influence line is an 

interpolation model 𝜂(𝑥, 𝑦, 𝑇𝐷) that considers the longitudinal 

axle position 𝑥, the transversal axle position 𝑦, and the 

temperature of the asphalt layer 𝑇𝐷. Grid points are obtained 

with an axle load of 100 kN in 63 axle positions along the 

longitudinal direction and five in transversal direction. Again, 

eight temperature grid points are considered, resulting in 2520 

FE-solutions per damage scenario. 

Feature extraction is carried out in a similar fashion as for the 

real-world data, resulting in the same 36 features. The 

simulated R-/M-values of the strain signals also show a linear 

relationship between each other (see Figure 9). The values and 

the variance are comparable to the real-world data. R-values 

that contain the displacement of the bearings as well as the 

natural frequencies show non-linear dependencies with 

temperature and other features. The variance of e.g. R(b-d, b01) 

or 𝑓2 is significantly lower than in the real-world data. This 

indicates that not all influences are accounted for in the 

simulation.  

6 DAMAGE DETECTION WITH SIMULATED DATA 

The training period in the undamaged scenario S0 is chosen 

between July 2019 and the 21st of February 2020. Thereafter, 

two weeks are simulated for each scenario as application data.  

The same autoencoder architecture is used for the simulation 

as for the real-world data. Although a lower compression rate 

than 0.5 is feasible to achieve high model accuracy with the 

simulated data, it is crucial to investigate if damage detection 

can be achieved with the chosen compression rate. Therefore, 

18 neurons are used in the bottleneck layer. 

The results of the anomaly detection procedure are illustrated 

in Figure 10. The 99th-percentile threshold of the log-normal 

distribution fitted to the daily median of the reconstruction error 

is 0.029. There are some anomalies in the training period, also 

on days with very low temperatures. As can be seen, the error 

threshold is clearly exceeded in the damage scenarios S1-S4. 

The true positive rate is 100%. Median errors up to 24.5 are 

observed in S1-S3 which is more than 800 times the threshold. 

An interesting observation is that the reconstruction error does 

not increase with progressing damage severity. No difference 

in the magnitude of the reconstruction error is noticeable for the 

scenarios S1-S3.  

In further investigations, it is assessed if damage detection 

with an autoencoder and a compression rate of 0.5 is also 

possible using the extreme values and integrals directly as 

features, i.e. without calculating the signatures beforehand. 

Although damage can be identified, the reconstruction error is 

significantly less sensitive. Therefore, a calculation of the 

R-/M-signatures in the pre-processing step is preferred. Based 

on the simulation, the conclusion is drawn that a similar 

damage case can be identified with a high probability in the 

real-world data using the presented approach with the R-/M-

signature. 

7 CONCLUSION 

The findings of this article can be summarized as follows: 

• The measurement signals can be segmented into intervals 

with traffic load and intervals with predominantly 

temperature load. Four different features are extracted: the 

R- and M-signature for crossing vehicles, the displacement 

of the bearings under temperature load, and natural 

frequencies. In total, a 36-dimensional feature vector is 

obtained for every vehicle crossing. A theoretical 

derivation of the R-signature based on influence lines is 

given.  
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Figure 9. Correlation structure of selected features of the simulated data 

 
(a) (b) 

Figure 10. Anomaly detection with simulated data: (a) training period (b) application period 

• An autoencoder with five perceptron layers is suitable to 

reconstruct the non-linear real-world monitoring data. A 

compression rate of 0.5 is required to achieve a high 

accuracy of the model. It is observed that the anomaly 

detection procedure can detect the erroneous offset of 

sensor signals. 

• A crack in the bottom chord is simulated with an FE-model 

of the bridge under realistic temperature and traffic loads. 

The simulated data shows similar non-linear dependencies 

as the real-world data. In order to investigate if the 

procedure can also detect structural damage, an 

autoencoder with the same architecture and compression 

rate as for the real-world data is used with the simulation. 

Damage is clearly identified. 

• The simulation shows that the reconstruction error does not 

necessarily increase with progressing damage severity. 

Moreover, the procedure gives no insights into the sources 

of anomalies. Further research is required on methods to 

simplify the interpretation of anomalies. A combination or 

a coupling of different types of models, physical and non-

physical, could be effective for this task. 
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